Abstract

Reported herein is comprehensive study of a highly active and stable cobalt catalyst for overall water splitting. This composite SFCNF/Co1- x S@CoN, consisting of S-doped flexible carbon nanofiber (SFCNF) matrix, Co1- x S nanoparticles, and CoN coatings, is prepared by integration of electrospinning and atomic layer deposition (ALD) technique. Representative results include the following: 1) ultrathin CoN layer is deposited by ALD on the surface of flexible substrate without any sacrifice of SFCNF and Co1- x S; 2) the composite exhibits strong electrocatalytic activity in both acidic and basic solutions. The overpotentials of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are 20 and 180mV, respectively, at a current density of 10mA cm-2 in basic medium. A small Tafel slope of 54.4mV dec-1 is observed in 0.5 m H2 SO4 electrolyte; 3) tested as overall water splitting electrode, the composite records a current density of 10mA cm-2 at a relative low cell voltage of 1.58V and long-term stability for 20 h at a current density of up to 50mA cm-2 . The superior performance for overall water splitting is probably attributed to the synergistic effect of Co1- x S and ALD CoN. Specifically, implementation of ALD can be extended to innovate nanostructured materials for overall water splitting and even other renewable energy aspects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.