Abstract
Cyber conflict is now a common and potentially dangerous occurrence. The target typically faces a strategic choice based on its ability to attribute the attack to a specific perpetrator and whether it has a viable punishment at its disposal. We present a game-theoretic model, in which the best strategic choice for the victim depends on the vulnerability of the attacker, the knowledge level of the victim, payoffs for different outcomes, and the beliefs of each player about their opponent. The resulting blame game allows analysis of four policy-relevant questions: the conditions under which peace (i.e., no attacks) is stable, when attacks should be tolerated, the consequences of asymmetric technical attribution capabilities, and when a mischievous third party or an accident can undermine peace. Numerous historical examples illustrate how the theory applies to cases of cyber or kinetic conflict involving the United States, Russia, China, Japan, North Korea, Estonia, Israel, Iran, and Syria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Proceedings of the National Academy of Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.