Abstract

AbstractOver the past few years, considerable attention has been paid to high‐Ni layered cathode materials for high‐energy Li‐ion batteries (LIBs); however, these materials intrinsically have low thermal stability. Alternatively, the high‐voltage operation of low‐Ni materials may be one of the attractive ways to provide various options for designing advanced LIBs. Here, the structural, electrochemical, and thermal properties of LiNi0.5Co0.2Mn0.3O2 (NCM523) and LiNi0.80Co0.15Al0.05O2 (NCA) are investigated by setting up the same initial discharge capacity. In the high‐voltage region, NCM523 exhibits less anisotropic lattice distortion and maintains wider Li‐ion channels than NCA. After long‐term cycling, reduced Ni ions are observed near the cracks, grain boundaries, or between the primary particles in both materials, however, the chemical states of the Ni ions in NCA are more heterogeneously distributed, and the particle pulverization and microcrack propagation are more prominent; the structural integrity and electrochemical properties of the material are degraded. Moreover, the cyclability and thermal stability of NCM523 are superior to those of NCA, despite the higher charge cut‐off voltage of the former. Therefore, the utilization of low‐Ni layered cathode materials operated at high voltage is a strategic approach to expand the design factors of advanced LIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.