Abstract

Predictions of forage production derived from site-specific environmental information (e.g., soil type, weather, plant communitycomposition, and so on) could help land managers decide on appropriate stocking rates of livestock. This study assessed the applicability of the Great Plains Framework for Agricultural Resource Management (GPFARM) forage growth model for both strategic (long-term) and tactical (within-season) prediction of forage production in northern mixed-grass prairie. An improved version of the model was calibrated for conditions at the USDA-ARS High Plains Grasslands Research Station in Cheyenne, Wyoming. Long-term (1983-2001) simulations of peak standing crop (PSC) were compared to observations. Also, within-season (1983) forecasts of total aboveground biomass made for 1 March onward, 1 April onward, 1 May onward, and 1 June onward were compared to observations. The normal, driest, and wettest weather years on record (1915-1981) were used to simulate expected values, lower bounds, and upper bounds of biomass production, respectively. The forage model explained 66% of the variability in PSC from 1983 to 2001. The cumulative distribution function (CDF) derived from long-term simulated PSC overestimates cumulative probabilities for PSC.1 500 kg ha-1. The generated CDF could be used strategically to estimate long-term forage production at various levels of probability, with errors in cumulative probability ranging from 0.0 to 0.16. Within-season forecasts explained 77%-94% of biomass variability in 1983. It was shown that monthly updating of the forage forecast, with input of actual weather to date, improves accuracy. Further development and testing of the forage simulation model will focus on the interactions between forage growth, environmental perturbations (especially drought), and grazing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.