Abstract

This study focuses on the impact of off-eutectic microstructures on mechanical properties in ternary Mo-Si-Ti alloys, namely Ti-rich Mo-18Si-72Ti and Mo-16.5Si-72Ti, in relation to the well-researched eutectic, two-phase Mo-20Si-52.8Ti alloy. The microstructure of these alloys consists of a Ti-rich body-centered cubic solid solution (Ti,Mo,Si)ss and a hexagonal silicide phase (Ti,Mo)5Si3. Notably, the off-eutectic alloys exhibit remarkable compression ductility at 800 °C, distinguishing it from Mo-20Si-52.8Ti. The directionally solidified (DS) specimens of the Ti-rich alloys display higher strength compared to the arc-melted specimens. This enhanced strength is attributed to the multiple precipitation strengthening events present, despite the increase in the length scale of individual phases which further enhances the fracture toughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.