Abstract
Hepatocellular carcinoma (HCC) presents a significant global health challenge due to its high incidence, poor prognosis, and limited treatment options. As a pivotal regulator of protein stability, E3 ubiquitin ligase plays a crucial role in tumorigenesis and development. This review provides an overview of the latest research on the involvement of E3 ubiquitin ligase in hepatocellular carcinoma and elucidates its significance in hepatocellular carcinoma cell proliferation, invasion, and evasion from immune surveillance. Special attention is given to the functions of RING, HECT, and RBR E3 ubiquitin ligases and their association with hepatocellular carcinoma progression. By dissecting the molecular mechanisms and regulatory networks governed by E3 ubiquitin ligase, several potential therapeutic strategies are proposed: including the development of specific inhibitors targeting E3 ligases; augmentation of their tumor suppressor activity through drug or gene therapy; utilization of E3 ubiquitin ligase to modulate immune checkpoint proteins for improved efficacy of immunotherapy; combination strategies integrating traditional therapies with E3 ubiquitin ligase inhibitors; as well as biomarker development based on E3 ubiquitin ligase activity. Furthermore, this review discusses the prospect of overcoming drug resistance in hepatocellular carcinoma treatment through these novel approaches. Overall, this review establishes a theoretical foundation and offers fresh insights into harnessing the potential of E3 ubiquitin ligase for treating hepatocellular carcinoma while highlighting future research directions that pave the way for clinical translation studies and new drug discoveries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.