Abstract
As a green, safe, and efficient method of coal development, underground coal gasification (UCG) technology has gradually moved from the experimental stage to the industrial production stage. This technology plays one of the key roles in the sustainable development of resources and energy. However, underground mining will inevitably lead to strata movement and surface subsidence, which will have certain impacts on the surface environment and buildings. Currently, limited research results on strata movement and surface subsidence under high-temperature environments hardly support the further development of the UCG technology. Hence, this study aims at the key problems of UCG strata movement and surface subsidence prediction. The study established a numerical model to analyze the effects of thermal stress and coal–rock burnt on strata movement and surface subsidence. Results show that coal–rock burnt caused by high temperature has greatly changed the characteristics of UCG strata movement and surface subsidence and is the main controlling factor for aggravating the strata movement and surface subsidence of UCG. The coordinated deformation calculation method of the UCG cavity roof-coal pillar-floor is formed. Moreover, the cooperative subsidence space is regarded as the mining space. A prediction model of surface subsidence based on continuous-discrete medium theory is also established using the probability integral method. The reliability of the predicted model is proved by comparing the measured value with the predicted value.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.