Abstract

Inspired by functional systems in nature, chemists have created a number of intriguing and useful molecular systems from porphyrins and their metal complexes. Of the synthetic porphyrin derivatives developed to date, strapped porphyrins are unique because they have three-dimensional architectures based on a built-in two-dimensional porphyrin molecule. Consequently, the structures of strapped porphyrins can be customized through detailed molecular design, thereby allowing the synthesis of sophisticated molecular systems. Herein, we describe strapped porphyrin-based polymeric systems. In particular, we focus on molecular design concepts that are established in combination with photophysical, electronic and mechanical properties of polymeric materials. Inspired by functional systems in nature, chemists have created a number of intriguing and useful molecular systems from porphyrin derivatives. Of the synthetic porphyrin derivatives developed to date, strapped porphyrins are unique because they have three-dimensional architectures based on a built-in two-dimensional porphyrin molecule. Consequently, the structures of strapped porphyrins can be customized through detailed molecular design, thereby allowing the synthesis of sophisticated molecular systems. Herein, we describe strapped porphyrin-based polymeric systems with a particular focus on molecular design concepts that have led to unique photophysical, electronic and mechanical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call