Abstract

Erythropoiesis is regulated at many levels, including control of mRNA translation. Changing environmental conditions, such as hypoxia or the availability of nutrients and growth factors, require a rapid response enacted by the enhanced or repressed translation of existing transcripts. Cold shock domain protein e1 (Csde1/Unr) is an RNA-binding protein required for erythropoiesis and strongly upregulated in erythroblasts relative to other hematopoietic progenitors. The aim of this study is to identify the Csde1-containing protein complexes and investigate their role in post-transcriptional expression control of Csde1-bound transcripts. We show that Serine/Threonine kinase receptor-associated protein (Strap/Unrip), was the protein most strongly associated with Csde1 in erythroblasts. Strap is a WD40 protein involved in signaling and RNA splicing, but its role when associated with Csde1 is unknown. Reduced expression of Strap did not alter the pool of transcripts bound by Csde1. Instead, it altered the mRNA and/or protein expression of several Csde1-bound transcripts that encode for proteins essential for translational regulation during hypoxia, such as Hmbs, eIF4g3 and Pabpc4. Also affected by Strap knockdown were Vim, a Gata-1 target crucial for erythrocyte enucleation, and Elavl1, which stabilizes Gata-1 mRNA. The major cellular processes affected by both Csde1 and Strap were ribosome function and cell cycle control.

Highlights

  • Maintenance of correct numbers of erythrocytes in peripheral blood requires continuous replenishment with newly synthesized cells

  • To investigate which proteins form a complex with Csde1 in erythroblasts, we utilized the strong affinity of streptavidin-biotin interaction as an efficient alternative to antibody-based

  • SDS-PAGE of cell lysates and subsequent silver staining showed a series of bands representing endogenously biotinylated proteins that are common to both the Csde1-pulldown lane and the BirA pulldown control (Fig 1A)

Read more

Summary

Introduction

Maintenance of correct numbers of erythrocytes in peripheral blood requires continuous replenishment with newly synthesized cells. Proliferation and differentiation of erythroblasts needs to be tightly balanced to prevent anemia and ischemic damage of organs, or an excess of erythrocytes and a risk for stroke. Environmental factors such as growth factors (e.g. erythropoietin and stem cell factor) or nutrients (e.g. iron) are crucial to control erythropoiesis, which occurs in part through control of translation of the available transcriptome. RNA binding factors have an important role in control of translation. Iron regulatory proteins 1 and -2 (Irp, Irp2) bind to the iron response element in Ferritin and Transferrin receptor.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.