Abstract
The strangeness content of the nucleon and the contribution of strange quarks to various nucleon quantum numbers, besides being of fundamental interest, also affects calculations of cross sections of processes that are important in searches for new physics. Here we focus on direct searches for cold dark matter, in the scenario in which the lightest supersymmetric neutral particle dominates the CDM density in the universe and point out that interpretation of searches, as well as the choice of optimal materials for future experiments, are hobbled by uncertainties in the contribution of strange quarks to the nucleon spin. We show how a future low‐energy neutrino experiment using a liquid‐Ar TPC can make important contributions in determining this quantity with much better precision and reduced theoretical uncertainties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.