Abstract

Strange periodic attractors with complicated, long-lasting transient dynamics are found in a prey-predator model with disease transmission in the prey. The model describes viral infection of a phytoplankton population and grazing by zooplankton. The analysis of the three-dimensional system of ordinary differential equations yields several semi-trivial stationary states, among them two saddle-foci, and the sudden (dis-)appearance of a continuum of degenerated nontrivial equilibria. Along this continuum line, the equilibria undergo a fold-Hopf (zero-pair) bifurcation (also called zip bifurcation). The continuum only exists in the bifurcation point of the saddle-foci. Especially interesting is the emergence of strange periodic attractors, stabilizing themselves after a repeated torus-like oscillation. This form of coexistence is related to persistent and permanent ecological communities and to bursting phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.