Abstract

Our current understanding of strongly correlated electron systems is based on a homogeneous framework. Here we take a step going beyond this paradigm by incorporating inhomogeneity from the beginning. Specifying to systems near the Mott metal-insulator transition, we propose a real space picture of itinerant electrons functioning in the fluctuating geometries bounded by interfaces between metallic and insulating regions. In 2+1-dimensions, the interfaces are closed bosonic strings, and we have a system of strings coupled to itinerant electrons. When the interface tension vanishes, the geometric fluctuations become critical, which gives rise to non-Fermi liquid behavior for the itinerant electrons. In particular, the poles of the fermion Green's function can be converted to zeros, indicating the absence of propagating quasiparticles. Furthermore, the quantum geometric fluctuations mediate Cooper pairing among the itinerant electrons, indicating the intrinsic instability of electronic systems near the Mott transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.