Abstract

Nontrivial $q \bar q$ sea effects have their origin in the low-$Q^2$ dynamics of strong QCD. We present here a quark model calculation of the contribution of $s \bar s$ pairs arising from a {\it complete} set of OZI-allowed strong $Y^*K^*$ hadronic loops to the net spin of the proton, to its charge radius, and to its magnetic moment. The calculation is performed in an ``unquenched quark model" which has been shown to preserve the spectroscopic successes of the naive quark model and to respect the OZI rule. We speculate that an extension of the calculation to the nonstrange sea will show that most of the ``missing spin" of the proton is in orbital angular momenta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.