Abstract

We determine the strangeness and light quark fractions of the nucleon mass by computing the quark line connected and disconnected contributions to the matrix elements m_q <N|qbar q|N> in lattice QCD, using the non-perturbatively improved Sheikholeslami-Wohlert Wilson Fermionic action. We simulate n_F=2 mass degenerate sea quarks with a pion mass of about 285 MeV and a lattice spacing a approx 0.073 fm. The renormalization of the matrix elements involves mixing between contributions from different quark flavours. The pion-nucleon sigma-term is extrapolated to physical quark masses exploiting the sea quark mass dependence of the nucleon mass. We obtain the renormalized values \sigma_{\pi N} = 38(12) MeV at the physical point and f_{T_s}=\sigma_s/m_N= 0.012(14)^{+10}_{-3} for the strangeness contribution at our larger than physical sea quark mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call