Abstract
STRANDS are thin elastic solids that are visually well approximated as smooth curves, and yet possess essential physical behaviors characteristic of solid objects such as twisting. Common examples in computer graphics include: sutures, catheters, and tendons in surgical simulation; hairs, ropes, and vegetation in animation. Physical models based on spring meshes or 3D finite elements for such thin solids are either inaccurate or inefficient for interactive simulation. In this paper we show that models based on the Cosserat theory of elastic rods are very well suited for interactive simulation of these objects. The physical model reduces to a system of spatial ordinary differential equations that can be solved efficiently for typical boundary conditions. The model handles the important geometric non-linearity due to large changes in shape. We introduce Cosserat-type physical models, describe efficient numerical methods for interactive simulation of these models, and implementation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.