Abstract

Traditional national fermented products and cheeses are a source for the search for species and strains of lactic acid bacteria (LAB) which are not within the range of bacterial agents used in the dairy industry. Classical and modern genetic-molecular methods are used to identify LAB isolated from such products. The purpose of our work was isolation and identification of LAB from traditional Carpathian cheeses made from ewe's milk and the study of their technological properties. Three samples of cheese were selected for our research – one sample of brine cheese bryndza and one sample of budz (bryndza before salting), produced in the highlands of the Carpathians and one sample of buts, produced in the foothills zone. 106 cultures were isolated from the samples of cheese. Genus and species identification was completed using classical microbiological and molecular genetics methods. Based on the complex of tinctorial, cultural, physiological and biochemical indices, the LAB isolated were assigned to the following genera and species: Lactococcus spp. (26 cultures), including L. lactis (13 cultures) and L. garvieae (13 cultures); Lactobacillus spp. – L. plantarum (31 cultures); Enterococcus spp. – E. faecium (25 cultures); Leuconostoc spp. – L. mesenteroides (24 cultures). These results were confirmed by molecular genetics methods. The largest range of species was found in a sample of bryndza from the Carpathian highlands. The isolated cultures were studied according to technological properties – milk-coagulation activity, acid-forming ability and resistance to different concentrations of kitchen salt. Most strains of L. lactis ssp. lactis, L. plantarum and L. mesenteroides were active acid-forming agents and coagulated milk in 3–9 hours, while L. garvieae and E. faecium coagulated milk after more than 24 hours. More than 80% of cultures showed resistance to 4% of kitchen salt solution, E. faecium was observed to have the highest salt tolerance. The results of RAPD typing showed significant intra-species heterogeneity, which indicates the need for further research on identification of individual strains. In all samples of cheese, L. lactis, L. garvieae, E. faecium were detected, which shows that they are typical representatives within the traditional Carpathian bryndza. Particular attention was paid to E. faecium, as many researchers have indicated probiotic properties of individual strains, as well as the ability to synthesize volatile substances that enrich the flavor bouquet of cheeses. Today strains of E. faecium are involved in the bacterial composition of starter cultures for cheeses.

Highlights

  • Traditional dairy products are made from raw milk using non-industrial methods, and contain specioes and strains of lactic acid bacteria (LAB), which are currently not included in fermentation starter preparations used in the dairy industry

  • We established that the total number of LAB (Table 2), isolated from the sample of bryndza (A), was 1.5–1.9 times less than for the samples of budz (B and C)

  • Such difference is explained by the effect on the survivability of the LAB caused by the table salt, which composed 5.5% of the bryndza

Read more

Summary

Introduction

Traditional dairy products are made from raw milk using non-industrial methods, and contain specioes and strains of lactic acid bacteria (LAB), which are currently not included in fermentation starter preparations used in the dairy industry. These bacteria may be capable of valuable technological (Zhong et al, 2016) and probiotic properties (Natarajan and Parani, 2015; Zhang et al, 2016, 2017). The composition and properties of the bacteria of domestic traditional fermented milk products and cheese, made in non-industrial conditions in Ukraine remain unresearched, and the number of such products continues to decrease

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call