Abstract

The strain-rate dependence of low cycle fatigue behavior of ASTM A533B low-alloy steel was investigated in a simulated BWR environment. Fatigue resistance of the steel was found to be closely dependent on cyclic strain rate in high-temperature water. A tortuous cracking morphology was dominant at high strain rate and typical fan-like or quasi-cleavage cracking patterns were frequently observed on the corresponding fracture surface. An entirely straight cracking morphology, however, became dominant at low strain rate. Evidence of crack arrest was found on the fracture surface rather than fan-like or quasi-cleavage cracking patterns. The above cracking behavior in simulated BWR water may be attributed to a strain-rate-induced change in the dominant environmentally assisted cracking (EAC) mechanism from hydrogen-induced cracking to film-rupture/slip-dissolution-controlled cracking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call