Abstract

Electronic structures of few-layer black phosphorus (BP) with biaxial strain are investigated by using methods based on density functional theory. The compressive strain can result in a semiconductor–metal transition (SMT) for few-layer BP, whereas the tensile strain only affects the band gaps. The critical compressive strain for the SMT is larger in the thinner 2D BP. The band structures and charge densities are calculated in order to provide imperative understanding on SMT. With the compressive strain, the energy of conduction bands moves down, which is induced by the structural change and is essential reason of SMT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.