Abstract

Diglycidyl ether of bisphenol A (DGEBA) is widely exploited as an epoxy resin in adhesives and coatings. In this paper, it is used as an oligomer matrix for silica-filled nanocomposites. Rheological measurements show that the pure matrix obeys power-law relaxation dynamics in the vicinity of the dynamic glass transition of this low-molecular-weight glass former. In the filled systems, a low-frequency relaxation appears additionally to the structural α-process of the matrix. Considering the nanocomposites as Newtonian hard-sphere suspensions at low angular frequencies (or high temperatures), the modified terminal regime behavior of the matrix can be linked to strain-induced perturbations of the isotropic filler distributions. While in the low-frequency regime hydrodynamic stresses relax instantaneously, the Brownian stress relaxation is viscoelastic and can be evidenced by dynamic rheological measurements. At higher angular frequencies, the α-process of the matrix superimposes on the Brownian stress relaxation. In particular, we were able to depict the low-frequency anomaly for concentrated, semi-dilute, and even for dilute suspensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.