Abstract

Electronic states of layered InGaAs∕GaAs(001) quantum wire and quantum dot chain structures have been investigated by electroreflectance and surface photovoltage spectroscopy. Band-gap shrinkage and heavy-hole/light-hole state splitting have been observed in the GaAs barrier material. This can be understood by shear strain existing in the GaAs barrier due to strain relaxation and anisotropy within the wires or dot chains. By comparing the experimental results with theoretical calculations, we found that the strain relaxation in the direction perpendicular to the wires or the dot chains has a stronger effect on the heavy-hole–light-hole splitting than on band-gap modification in the InGaAs wires and dot chains. The piezoelectric field induced by the shear strain is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.