Abstract
We studied the deformation and relaxation of a water droplet covered with polystyrene latex particles (diameter ca. 200 nm) and embedded in an immiscible fluid after a large strain jump. We show that the presence of the solid particles at the droplet interface slows down the retraction kinetics in comparison with a pure water droplet and induces flow singularity not observed with pure water droplets. The terminal relaxation time of the retraction process, defined as the characteristic time required for the droplet to relax to its spherical equilibrium shape, increases linearly with the applied strain. This result implies a memory effect induced by the presence of solid particles at the droplet interface in a solid-stabilized or Pickering emulsion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.