Abstract
This paper presents a fundamental study of a stress memorization technique (SMT), which utilizes a capping nitride dielectric film to enhance negative channel field-effect transistor (nFET) device performance. SMT strain engineering is highly compatible with current standard complementary metal oxide semiconductor processes without introducing substantial additional complexity. In this work, we report that SMT-strained nFET exhibits a higher transconductance , which indicates strain-induced electron mobility enhancement. The nFET short channel effect is also improved by the SMT process. Improved roll-off characteristics manifest itself and are shown to result from retarded junction diffusion as indicated by secondary-ion mass microscopy analysis. Finally, this work demonstrates that when combined with a strained contact etch stop layer (CESL) technique, SMT provides additional strain beyond that provided by the CESL, which results in further improved nFET performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.