Abstract

SSOI substrates were successfully fabricated using He+ ion implantation and annealing to relax thin (< 500nm) SiGe buffer layers, bonding and layer transfer processes to realize strained-Si layers onto oxide layers. The reduced thickness of the SiGe buffer possess numerous advantages such as reduced process costs for epitaxy and for reclaim of the handle wafer if the layer splitting is initiated in the SiGe/Si interface. The electron mobilities in the fabricated SSOI layers were measured using transistors with different gate lengths. An electron mobility of ~530 cm2 /Vs was extracted, being much higher than in non-strained SOI substrates. Furthermore, an 80% drive current (IDSAT) improvement has been measured for long channel devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.