Abstract

This tutorial article explains the two important reasons for the introduction of strain into the active region of a quantum-well laser. First, it reduces the density of states at the top of the valence band, which allows population inversion to be obtained at a lower carrier density. Second, it distorts the 3-D symmetry of the crystal lattice and matches it more closely to the 1-D symmetry of the laser beam. Together these effects greatly enhance almost all characteristics of semiconductor lasers and make possible a wide range of applications. Combinations of compressive and tensile strain can also be used, for example, to produce nonabsorbing mirrors and polarization-insensitive semiconductor optical amplifiers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.