Abstract

In this paper, we describe the results of using strain-compensation (SC) for closely-stacked InAs/GaAs quantum dot (QD) structures. The effects of the (In)GaP SC layers has been investigated using several methods. High-resolution x-ray diffractometry (XRD) quantifies the values of experimental strain reduction compared to calculations. Atomic force microscopy (AFM) indicates that the SC layer improves both QD uniformity and reduces defect density. Furthermore, increase in photoluminescence (PL) intensity has been observed from compensated structure. The use of Indium-flushing to dissolve large defect islands prevent further defect propagation in stacked QD active region. Room-temperature ground-state lasing at emission wavelengths of 1227-1249 nm have been realized with threshold current densities of 208-550 A/cm 2 for 15-20 nm spacing structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.