Abstract

SARS-CoV-2 virus is the cause of COVID-19 pandemic and belongs to RNA viruses, showing great tendency to mutate. Several dozens of mutations have been observed on the SARS-CoV-2 virus, during the last two years. Some of the mutated strains show a greater infectivity and are capable of suppressing the earlier strains, through interference. In this work, kinetic and thermodynamic properties were calculated for strains characterized by various numbers and locations of mutations. It was shown that mutations lead to changes in chemical composition, thermodynamic properties and infectivity. Through competition, the phenomenon of interference of various SARS-CoV-2 strains was explained, which results in suppression of the wild type by mutant strains. Standard Gibbs energy of binding and binding constant for the Omicron (B.1.1.529) strain were found to be ΔBG⁰ = −45.96 kJ/mol and KB = 1.13 ∙ 10+8 M−1, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call