Abstract

Wearable tactile sensors have found widespread applications in human health monitoring, motion monitoring, human-machine interactions, and artificial prostheses. Herein, we demonstrate a new and feasible strategy for wearable optical sensors based on surface wrinkles that are ultrasensitive to strain using a bilayer wrinkling system, in which the relevance between strain and the optical signal can be founded on surface wrinkles. The strain (S⃑(ε, θS)), the wrinkled topography (W⃑(A, θW)), and the reflected optical signal (O⃑(δ, θO)) are correlated with each other, allowing simultaneous measurement of the strain magnitude and direction due to the vector property of optical signals. In addition, interactively visualized detection of slight strain has been achieved by a conspicuous structural color change, successfully amplifying the strain signal owing to the ultra-sensitivity of wrinkles and the nonlinearity of the optical signal. The sensor also exhibits electrical safety and immunity to electromagnetic interference and thus may find potential applications in detecting various complex slight strains, such as subtle human motion or object deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.