Abstract

We use micro-Raman and photoluminescence (PL) spectroscopy at 300K to investigate the influence of uniaxial tensile strain on the vibrational and optoelectronic properties of monolayer and bilayer MoS2 on a flexible substrate. The initially degenerate E^1_{2g} Raman mode is split into a doublet as a direct consequence of the strain applied to MoS2 through Van der Waals coupling at the sample-substrate interface. We observe a strong shift of the direct band gap of 48meV/(% of strain) for the monolayer and 46meV/% for the bilayer, whose indirect gap shifts by 86meV/%. We find a strong decrease of the PL polarization linked to optical valley initialization for both monolayer and bilayer samples, indicating that scattering to the spin-degenerate Gamma valley plays a key role.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.