Abstract
AbstractStrain engineering has been widely used in the study of two‐dimensional semiconductors in recent years, because it can improve catalytic performance by changing the structural characteristics of materials. In this work, we systematically investigate the effects of biaxial strain on the electronic structure, band‐edge positions, and optical absorption of perfect Janus In2S2X (X=Se, Te) particles and vacancy In2S2X (V‐In2S2X). Biaxial strain enables In2S2X to achieve a transition between indirect and direct band gaps. Tensile strain reduces the band‐edge potential of the conduction band minimum (CBM), but compressive strain increases it and then tends to stabilize the material. In V‐In2S2X, the tensile strain makes the top bands of the bandgap overlap with the CBM and moves the bottom band of the bandgap down, reducing the bandgap, which makes the light absorption range redshift. Most importantly, we demonstrate that V‐In2S2X obtains excellent photocatalytic CO2 reduction performance under 4 % tensile strain, broadening its practical applications in many fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.