Abstract

Using first-principles calculations and Boltzmann transport theory, we study the effect of biaxial tensile strain on phonon transport in a Janus PtSTe monolayer. The band gap between the optical and acoustic phonon branches shrinks with increasing strain, resulting in a highly nonlinear monotonic decrease in the lattice thermal conductivity. That reduction reaches close to an order of magnitude when the gap disappears completely under high strains (>8%). This behavior is attributed to a strong enhancement of the anharmonic scattering of acoustic phonons due to the band overlap. Our findings underscore the potential of strain engineering as a class of methods to tune the thermal transport properties of two-dimensional (2D) Janus nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.