Abstract

Two-dimensional intrinsic magnetic materials with high Curie temperature (Tc) coexisting with 100% spin polarization are highly desirable for realizing promising spintronic devices. In the present work, the intrinsic magnetism of monolayer square CrBr2 is predicted by using first-principles calculations. The monolayer CrBr2 is an intrinsic ferromagnetic half-metal with the half-metallic gap of 1.58 eV. Monte Carlo simulations based on the Heisenberg model estimate Tc as 212 K. Furthermore, the large compressive strain makes CrBr2 undergo ferromagnetic–antiferromagnetic phase transition when the biaxial tensile strain larger than 9.3% leads to the emergence of semiconducting electronic structures. Our results show that the intrinsic half-metal with a high Tc and controllable magnetic properties endow monolayer square CrBr2 as a potential material for spintronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.