Abstract

The microstructural evolution and Young’s modulus evolution of EB-PVD TBCs upon thermal exposure and separately after CaO-MgO-Al2O3-SiO2 (CMAS) attack have been compared and investigated. Moduli measured by four methods all show an increase due to sintering whereas their rates of increase are different. On finer scale (i.e. nano indentation), modulus increases from 87.3 GPa in as-deposited coatings to 198 GPa after sintering at 1400 °C for 100 h. While on global scale, the modulus increases from below 10 GPa to153 GPa after identical exposure. For the CMAS attacked TBCs at 1300 °C for 0.5 h, modulus values acquired by different methods are much closer. The effect of sintering and CMAS infiltration on coating’s structural integrity is discussed in terms of elastic strain energy available for driving edge delamination. The energy release rate of CMAS attacked TBCs at 1300 °C for 0.5 h is ∼1200 J/m2, which is equivalent to that of TBCs exposed at 1400 °C for 250 h (no CMAS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.