Abstract

Random packings of granular chains are presented as a model system to investigate the contribution of entanglements to strain stiffening. The chain packings are sheared in uniaxial compression experiments. For short chain lengths, these packings yield when the shear stress exceeds the scale of the confining pressure, similar to granular packings of unconnected particles. In contrast, packings of chains which are long enough to form loops exhibit strain stiffening, in which the effective stiffness of the material increases with strain, similar to many polymer materials. The latter packings can sustain stresses orders-of-magnitude greater than the confining pressure, and do not yield until the chain links break. X-ray tomography measurements reveal that the strain-stiffening packings contain system-spanning clusters of entangled chains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.