Abstract

Pathogens resistant to multiple antibiotics are rapidly emerging, entailing important consequences for human health. This study investigated if the broad-host-range multiresistance plasmid pB10, isolated from a wastewater treatment plant, harbouring amoxicillin, streptomycin, sulfonamide, and tetracycline resistance genes, was transferable to the foodborne pathogens Salmonella spp. or E. coli O157:H7 and how this transfer alters the phenotype of the recipients. The transfer ratio was determined by both plating and flow cytometry. Antibiotic resistance profiles were determined for both recipients and transconjugants using the disk diffusion method. For 14 of the 15 recipient strains, transconjugants were detected. Based on plating, transfer ratios were between 6.8 × 10−9 and 3.0 × 10−2 while using flow cytometry, transfer ratios were between <1.0 × 10−5 and 1.9 × 10−2. With a few exceptions, the transconjugants showed phenotypically increased resistance, indicating that most of the transferred resistance genes were expressed. In summary, we showed that an environmental plasmid can be transferred into foodborne pathogenic bacteria at high transfer ratios. However, the transfer ratio seemed to be recipient strain dependent. Moreover, the newly acquired resistance genes could turn antibiotic susceptible strains into resistant ones, paving the way to compromise human health.

Highlights

  • IntroductionAntibiotic resistance in bacteria can be intrinsic or acquired

  • The extensive use of antibiotics in human and veterinary medicine and its prophylactic and growth promoting use in agriculture and aquaculture have lead to a huge rise of antibiotic resistant bacteria [1,2,3] and an increase of antibiotic resistant genes in the horizontal gene pool.Antibiotic resistance in bacteria can be intrinsic or acquired

  • This study investigated if the broad-host-range multiresistance plasmid pB10, isolated from a wastewater treatment plant, harbouring amoxicillin, streptomycin, sulfonamide, and tetracycline resistance genes, was transferable to the foodborne pathogens Salmonella spp. or E. coli O157:H7 and how this transfer alters the phenotype of the recipients

Read more

Summary

Introduction

Antibiotic resistance in bacteria can be intrinsic or acquired. Acquired resistance occurs by mutation and/or horizontal gene transfer events. The main mechanisms of horizontal gene transfer are conjugation (mobile genetic elements are being transferred from a donor to a recipient cell), transformation (uptake of naked DNA), and transduction (bacteriophages as transporters of genetic information). Conjugation is considered as the principal mode for antibiotic resistance transfer since many antibiotic resistance genes are situated on mobile elements, such as plasmids and conjugative transposons. Conjugation of broad-host-range plasmids enables DNA to be transferred over genus and species borders, whereas transformation and transduction are usually more limited to the same species [5].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call