Abstract

Identifying molecular changes that predict the risk for developing colon cancer is critical for designing effective prevention strategies. In the present study, we determined early-stage molecular alterations within the colonic epithelium of A/J and AKR/J mice that are sensitive and resistant to Azoxymethane (AOM)-initiated tumor development, respectively. Six week-old male mice were injected intraperitoneally with AOM (10 mg/kg body weight) once a week for six weeks. One week after the last injection, distal colons from both strains were analyzed for cell proliferation using a proliferating cell nuclear antigen (PCNA) assay. Unlike AKR/J, a significant increase (2.5-fold, p<0.05) in the number of PCNA-positive cells within the upper third of the crypt compartment was observed in the A/J colons. This proliferative response was associated with a sizeable increase in the levels of c-myc mRNA, quantified by RNase protection assay. cDNA sequencing, protein expression and localization of beta-catenin, an upstream activator of c-myc, however, showed no aberrant changes within AOM-exposed A/J colons. Interestingly, TdT-mediated dUTP nick-end labeling assay revealed a significant increase (4-fold) in the number of apoptotic colonocytes in A/J mice following AOM treatment. Consistent with this finding, a modest increase in the expression of pro-apoptotic Bak was limited to the sensitive A/J colons. In summary, the current study suggests that a significant alteration in the rate of cell turnover in the normal appearing colonic mucosa, as observed in susceptible A/J mice, may be one of the earliest events predisposing the colon to neoplastic growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.