Abstract

We demonstrate a local strain sensing method for nanostructures based on metallic Al tunnel junctions with AlOx barriers. The junctions were fabricated on top of a thin silicon nitride membrane, which was actuated with an atomic force microscope tip attached to a stiff cantilever. A large relative change in the tunneling resistance in response to the applied strain (gauge factor) was observed up to a value of 37. This facilitates local static strain variation measurements down to ∼10−7. This type of strain sensor could have applications in nanoelectromechanical systems used in displacement, force, and mass sensing, for example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.