Abstract

Strain sensing is one of the important functions of intelligent fabric, which can transform the external stress (or strain) into visible electrical signals and monitor the characteristics of human physiology and motion. At present, the flexible strain sensor has low sensitivity, small strain range and unstable performance after repeated stretching. In this work, core-spun yarns with polyurethane (PU) filament as core and long silver nanowires (AgNWs) loaded cotton fiber as shell was fabricated by spinning technology. The results showed that when the loading of AgNWs was 10 wt%, the strain range of the PU/cotton@AgNWs core-spun yarn was 0-60%, the gauge factor of 12.6 was linear, and the strain sensing and mechanical properties were stable after repeated stretching. This strain sensing elastic core-spun yarns constructed by spinning technology could be used as one of the important materials for intelligent wearable devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call