Abstract
We investigate the uniaxial strain modulated electronic structure and optical absorption of a triangular zigzag graphene quantum dot within the tight-binding approach. According to the symmetry analysis, the electronic structure and optical absorption can be correctly characterized before and after the strain is applied. The redshift or blueshift of the absorption peaks can be observed in the optical spectrum by uniaxial tensile or compressive strain, indicating that the strained triangular zigzag graphene quantum dot can be used as a strain sensor. The influence of dot sizes on the sensor sensitivity is also considered. Furthermore, the robustness of such a function against a single vacancy defect is confirmed. On the other hand, by applying a gate voltage on the strained dot, the Fermi energy is shifted away from zero, obvious far-infrared absorption peaks can appear in the optical spectrum, which means it is possible to realize far-infrared photodetectors based on strained graphene quantum dots.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.