Abstract

On the mechanistic level, response of periodontal fibroblasts permanently exposed to mechanical strain forces in vivo still lacks in clarity. Therefore, we first investigated putative strain modulation of proteins by combined 1D gel electrophoresis-based protein profiling and electrospray tandem mass spectrometry (ESI-MS). Thereafter, the exponential-modified protein abundance index (emPAI) identified strain modulation of cytoskeleton-associated molecules, including decrease in talin and microtubule-associated protein 4 (MAP4), and significant increase in myosin IC (Myo IC), the latter ones regulated by Ca2+. These findings were corroborated by western blotting (WB) and indirect immunofluorescence (IIF). Regarding the dual function of Myo IC as actin-based cytoplasmic motor protein and nuclear transcription factor NM1, WB and IIF revealed inverse correlation for Myo IC and NM1. During strain application, cytoplasmic increase of Myo IC was counteracted by nuclear NM1 deprivation, the latter coinciding with a decline in RNA quantity. Independent on strain, cytoplasmic Myo IC and nuclear NM1 abundance could be abrogated by the Ca2+ channel blocker nifedipine, suggesting Ca2+ dependency of cytoplasmic and/or nuclear Myo IC/NM1 expression. Mechanistically, we conclude that, application of strain appears as causative for the decline in RNA by impacting NM1, thereby indicating the possible role of NM1 in RNA synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call