Abstract

BackgroundPopulations of closely related microbial strains can be simultaneously present in bacterial communities such as the human gut microbiome. We recently developed a de novo genome assembly approach that uses read cloud sequencing to provide more complete microbial genome drafts, enabling precise differentiation and tracking of strain-level dynamics across metagenomic samples. In this case study, we present a proof-of-concept using read cloud sequencing to describe bacterial strain diversity in the gut microbiome of one hematopoietic cell transplantation patient over a 2-month time course and highlight temporal strain variation of gut microbes during therapy. The treatment was accompanied by diet changes and administration of multiple immunosuppressants and antimicrobials.MethodsWe conducted short-read and read cloud metagenomic sequencing of DNA extracted from four longitudinal stool samples collected during the course of treatment of one hematopoietic cell transplantation (HCT) patient. After applying read cloud metagenomic assembly to discover strain-level sequence variants in these complex microbiome samples, we performed metatranscriptomic analysis to investigate differential expression of antibiotic resistance genes. Finally, we validated predictions from the genomic and metatranscriptomic findings through in vitro antibiotic susceptibility testing and whole genome sequencing of isolates derived from the patient stool samples.ResultsDuring the 56-day longitudinal time course that was studied, the patient’s microbiome was profoundly disrupted and eventually dominated by Bacteroides caccae. Comparative analysis of B. caccae genomes obtained using read cloud sequencing together with metagenomic RNA sequencing allowed us to identify differences in substrain populations over time. Based on this, we predicted that particular mobile element integrations likely resulted in increased antibiotic resistance, which we further supported using in vitro antibiotic susceptibility testing.ConclusionsWe find read cloud assembly to be useful in identifying key structural genomic strain variants within a metagenomic sample. These strains have fluctuating relative abundance over relatively short time periods in human microbiomes. We also find specific structural genomic variations that are associated with increased antibiotic resistance over the course of clinical treatment.

Highlights

  • Populations of closely related microbial strains can be simultaneously present in bacterial communities such as the human gut microbiome

  • We find read cloud assembly to be useful in identifying key structural genomic strain variants within a metagenomic sample

  • We find specific structural genomic variations that are associated with increased antibiotic resistance over the course of clinical treatment

Read more

Summary

Introduction

Populations of closely related microbial strains can be simultaneously present in bacterial communities such as the human gut microbiome. Strain-level variation can arise from several mechanisms including horizontal gene transfer and transposon mobilization. Each of these mechanisms has a welldescribed capacity to induce significant changes in phenotype. Bacteria can acquire and disseminate genomic elements encoding antibiotic resistance genes, virulence factors, or metabolic capabilities [4, 5]. Other mobile elements, such as transposons, can affect gene function and regulation by either disrupting coding sequences [6], or by upregulating neighboring genes through the introduction of strong promoter sequences often carried with the transposon [7, 8]. These transposons can be mobilized during physiological stress, such as exposure to antibiotics, and this mobilization can result in acquisition of improved niche-specific fitness [9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call