Abstract
Kossel microdiffraction in a scanning electron microscope enables determination of local elastic strains. With Kossel patterns recorded by a CCD camera and some automation of the strain determination process, this technique may become a convenient tool for analysis of strains. As for all strain determination methods, critical for the applicability of the Kossel technique is its strain resolution. The resolution was estimated in a number of ways: from the simplest tests based on simulated patterns (of an Ni alloy), through analysis of sharp experimental patterns of Ge, to estimates obtained byin situtensile straining of single crystals of the Ni-based superalloy. In the latter case, the results were compared with those of conventional X-ray diffraction and synchrotron-based Kossel diffraction. In the case of high-quality Ge patterns, a resolution of 1 × 10−4was reached for all strain tensor components; this corresponds to a stress of about 10 MPa. With relatively diffuse patterns from the strained Ni-based superalloy, under the assumption of plane stress, the strain and stress resolutions were 3 × 10−4and 60 MPa, respectively. Experimental and computational conditions for achieving these resolutions are described. The study shows potential perspectives and limits of the applicability of semiautomatic Kossel microdiffraction as a method of local strain determination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.