Abstract

The deliberate use of surfactants during the growth of Ge on Si(001) prevents the formation of three-dimensional clusters and allows the deposition of continuous and smooth Ge films. This, however, is not valid for the regime of strained film growth prior to the generation of misfit-relieving defects. Using Sb as the surfactant, an 8-ML-thick pseudomorphic Ge film exhibits a pronounced microroughness on an angstrom scale. The average terrace width is only \ensuremath{\sim}10 \AA{}. Up to 4--5 vertical layers are simultaneously visible at the surface. This microroughness allows the Ge atoms (which are under compressive stress) to relieve lattice-misfit-related strain by partial lateral relaxation towards their bulk lattice constant. This would not be possible for a flat and continuous film. Now the microrough surface is energetically favored and the influence of the growth kinetics is therefore observed in an increase of the roughness with temperature. Strain-relieving defects are generated at a coverage of \ensuremath{\sim}12 ML and finally lead to heavily defected films consisting of small-angle mosaics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.