Abstract
Lattice mismatch in a bimetallic core–shell nanoparticle will cause strain in the epitaxial shell layer, and if it reaches the critical layer thickness misfit dislocations will appear in order to release the increasing strain. These defects are relevant since they will directly impact the atomic and electronic structures thereby changing the physical and chemical properties of the nanoparticles. Here we report the direct observation and evolution through aberration-corrected scanning transmission electron microscopy of dislocations in AuPd core–shell nanoparticles. Our results show that first Shockley partial dislocations (SPD) combined with stacking faults (SF) appear at the last Pd layer; then, as the shell grows the SPDs and SFs appear at the interface and combine with misfit dislocations, which finally diffuse to the free surfaces due to the alloying of Au into the Pd shell. The critical layer thickness was found to be at least 50% greater than in thin films, confirming that shell growth on nanoparticles can sustain more strain due to the tridimensional nature of the nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.