Abstract

We have studied the mechanisms underlying strained layer relaxation by means of point defect interaction. During high temperature (300 °C) proton irradiation, vacancies generated in the vicinity of SiGe layer migrate and accumulate within the compressively strained SiGe layer. The accumulating vacancies are stabilized by hydrogen, which diffuses from the implanted region, thus allowing the nucleation and growth of hydrogen-vacancy (V-H) complexes. The formation of V-H complexes is accompanied by gradual strain relief in SiGe layer. Since the diffusion of both vacancies and hydrogen is limited by the irradiation temperature, strain relaxation of the SiGe layer is not realized during room temperature (20 °C) proton irradiation. The study supports the idea that the compressive stress in the SiGe layer induces the indiffusion of vacancies and H, and reveals the important role of point defects in the strain relaxation of the strained SiGe layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.