Abstract

ABSTRACTThe relaxation processes of strained silicon films on silicon-rich relaxed SiGe alloys have been studied. Experimental structures were generated via Molecular Beam Epitaxial (MBE) growth techniques and contain a strained silicon capping layer of approximately 50 nm. The relaxed SiGe alloy compositions range from 0 to 30 atomic% germanium. Samples received two distinct types of silicon implants. A 12 keV Si+ implant at a dose of 1×1015 atoms/cm2 was used to generate an amorphous layer strictly confined within the strained Si cap. An alternate 60 keV Si+ implant at a dose of 1×1015 atoms/cm2 was employed to create a continuous amorphous layer extending from the sample surface to a position 50 nm into the bulk SiGe material. The strain relaxation and regrowth processes are quantified through High Resolution X-Ray Diffraction (HRXRD) rocking curves and Cross-sectional Transmission Electron Microscopy (XTEM). The role of injected silicon interstitials upon the strain relaxation processes at the Si/SiGe interface after annealing at 600°C is investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.