Abstract

A mechanism of strain relief of H+ ion implanted and annealed pseudomorphic Si1−xGex/Si(100) heterostructures grown by molecular beam epitaxy is proposed and analyzed. Complete strain relaxation was obtained at temperatures as low as 800 °C and the samples appeared free of threading dislocations within the SiGe layer to the limit of transmission electron microscopy analysis. In our model, H filled nanocracks are assumed to generate dislocation loops, which glide to the interface where they form strain relieving misfit segments. On the basis of this assumption, the conditions for efficient strain relaxation are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.