Abstract
With a Curie point at 370 K, the half-metal (La0.7Sr0.3)MnO3 (LSMO) is one of the most interesting candidates for electronic devices based on tunnel magnetoresistance. SrTiO3 (STO) is up to now the best substrate for the epitaxy of suitable thin films of LSMO. The pseudocubic unit cell of rhombohedral LSMO has a parameter a LSMO such that (a STO − a LSMO)/a LSMO = + 0.83% (where a STO is the parameter of cubic STO) and an angle of 90.26°. As strained growth is tetragonal, relaxation implies recovery of both the pseudocubic parameter and of the original angle. In the LSMO layers that we prepare by pulsed-laser deposition, we show that these two processes are quite independent. The angular distortion is partially recovered by twinning in films 25 nm thick, while recovery of the parameter never occurs in the thickness range that we explored (up to 432 nm). A relaxation, however, takes place above a thickness of 100 nm, associated with a transition from two-dimensional to three-dimensional columnar growth. It is accompanied by chemical fluctuations. Our magnetic measurements exhibit Curie temperatures and magnetic moments very close to the bulk values in those layers where the crystal parameter is strained but the angle partially relaxed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.