Abstract

The mechanical response of most soft tissue is considered to be viscohyperelastic, making the development of accurate constitutive models a challenging task. In this article, we present a constitutive model for bovine liver tissue that utilizes a viscous dissipation potential, and use it to model the response of bovine liver tissue at strain rates ranging from 0.001 to 0.04 s(-1). On the material modeling front of this study, the free energy is assumed to depend on the right Cauchy-Green deformation tensor, whereas a separate rate-dependent viscous potential is posited to characterize viscoelasticity. This viscous dissipation component is a function of the time rate of change of the right Cauchy-Green deformation tensor. On the experimental front, no-slip uniaxial compression experiments are conducted on bovine liver tissue at various strain rates. A numerical correction approach is used to account for the no-slip edge conditions, and the constitutive model is fit to the resulting corrected stress-strain data. The complete derivation of the material model, its implementation in the finite element software package ABAQUS, and a validation study are presented in this article. The results show that bovine liver tissue exhibits a strong strain-rate dependence even at the low strain rates considered here and that the proposed constitutive model is able to accurately describe this response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.