Abstract
AbstractYield stress of a series of poly(ethylene terephthalate) (PET) filament samples, which differ in molecular draw ratio, was observed at a range of strain rate and temperature to reveal the relation between microstructure and yield stress behavior. Based on the observations, a novel correlation between (quasistatic) tensile yield behavior and dynamic mechanical properties was proposed. Above secondary relaxation temperature and below primary relaxation temperature, changes in yield stress with strain rate and temperature could be described successfully with one activated rate process, Eyring's model of yielding, regardless of the microstructure of PET samples. The activation enthalpy of Eyring's model increased almost linearly with crystallinity, while the activation volume decreased with crystallinity in a sigmoidal fashion. We suggest that crystalline structural development elevates the energy barrier for yield, and that the scale of molecular motion for yield decreases with microstructural development, not only because of the decrease in molecular volume. Such a scale of molecular motion as Eyring's activation volume could possibly interpret the loss tangent (tan δ), i.e., as the activation volume increases, loss tangent maxima of both primary and secondary relaxation increase almost linearly. Relation between the activation volume of Eyring's model of (quasistatic tensile) yield and loss tangent maximum of the dynamic mechanical behavior.imageRelation between the activation volume of Eyring's model of (quasistatic tensile) yield and loss tangent maximum of the dynamic mechanical behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.