Abstract
We report on the loading-rate dependence of localized plastic deformation in inorganic covalent, metallic, ionic and superionic glasses. For this, the strain-rate sensitivity is determined through instrumented nanoindentation in a load-controlled strain-rate jump test. Through relating the strain-rate sensitivity to the reduced temperature, the packing density, the network dimensionality and the average single bond strength of the system, a qualitative mechanistic description of the strain-mediating process is possible. A strong variability of strain-rate sensitivity is obtained only at intermediate values of packing density, network connectivity or bond strength, when other parameters such as chemical composition and specific structural arrangement are dominating the deformation process. On the other side, for high bond strength and connectivity or for high packing density, the strain-rate sensitivity of the considered glasses is always low, which is also confirmed through the dependence of strain-rate sensitivity on Poisson ratio. Here, only for glasses with a Poisson ratio of ~0.3–0.4 we observe a wide variability of the loading-rate dependence of local deformation. For higher or lower Poisson ratio, the observed dependence is always low: when the limiting factor in deformation is primarily network connectivity and bond strength or packing density, respectively, once an activation barrier is overcome, deformation is only weakly loading-rate-dependent. This is regardless of the height of the activation barrier. When approaching the glass transition temperature, high strain-rate sensitivity is observed only in glasses where non-Newtonian flow is expected also in the corresponding liquid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.